Names: _____

Date: _____

Calculating with Catapults: Discovering Parabolic Properties

Courtney Elmendorf

Grade Level: high school

Purpose: Discover properties of a parabola and make connections between hands-on work and mathematical vocabulary.

Materials:

- Approximately 13 popsicle sticks
- 3 rubber bands
- Ruler/Tape Measure
- Dime (or other projectile)
- Graphing calculator
- Paper and pencil

Directions: Break up into groups of 3-4. Assign a group member to each role:

The Recorder(s) makes and records measurements: ______ The Foundation holds the catapult: ______

The Launcher shoots the projectile:

Construct the catapult according to the following steps:

- Stack eleven popsicle sticks and rubber band each end tightly
- Carve two notches at one end of each of the remaining two popsicle sticks
- Insert one notched popsicle stick above the bottom popsicle stick in the stack
- Place the other notched popsicle stick on top of the stack
- Loosely rubber band the notched popsicle sticks to make the arm

Practice with your catapult, perform your trials *in inches*, and record your data:

Launch Height*	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Average Distance**
1/4						
1/2						
7/8						
1						
1 ¹ /4						
1 1/2						
$1^{7}/_{8}$						

* *Launch height* refers to the distance above the ground the launch arm is pushed and will be the **x-axis** of your graph.

** *Average distance* will be the **y-axis** of your graph.

Now create a quadratic equation and graph from your data using your graphing calculator:

- 1.) STAT \rightarrow Edit
- 2.) Input *launch heights* for L1 and *average distance* for L2.
- 3.) STAT \rightarrow Calc \rightarrow select "5:QuadReg" \rightarrow ENTER
- 4.) VARS → Y-Vars → select "1:Function" → ENTER
- 5.) Select "1:Y1" \rightarrow ENTER
- 6.) ENTER to get quadratic equation
- 7.) Y=
- 8.) Use "up" arrow to highlight "Plot1" \rightarrow ENTER
- 9.) GRAPH \rightarrow WINDOW to adjust screen so that all seven points are in view.

Quadratic Equation:

Analysis Questions:

- 1.) What does the point (1.875, 0) represent?
- 2.) What is the highest point on the graph, and what does it represent?
- 3.) Describe the behavior of the graph in terms of how launch height affects projectile distance.
- 4.) What does the "a" term of the quadratic equation tell us, and why does this make sense?

Extension Activities:

- List sports/occupations in which an understanding of projectile motion is useful.
- Predict the launch height needed to land the projectile in a basket at a known distance.